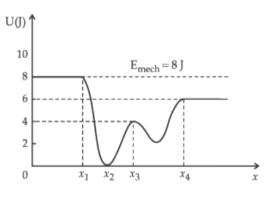
JEE Main 2021 | Work, Energy, Power



Question 1

(Only one correct answer)

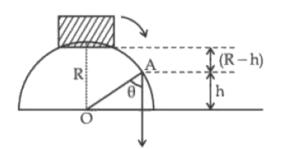
2021

Given below is the plot of a potential energy function U(x) for a system, in which a particle is in one dimensional motion, while a conservative force F(x) acts on it. Suppose that

where K. E. = kinetic energy

- \bigcirc (a) at $x=x_3,\;K.\,E.=4$
- \bigcirc (b) at $x>x_4,\;K.\,E.$ is constant throughout the region.
- \bigcirc (c) at $x < x_1, \; K. \, E.$ is smallest and the particle is moving at the slowest speed.
- \bigcirc (d) at $x=x_2,\;K.\,E.$ is greatest and the particle is moving at the fastest speed.

Question 2


(Integer type question)

2021

A small block slides down from the top of hemisphere of radius $R=3\ m$ as shown in the figure. The

height 'h' at which the block will lose contact with the surface of the sphere is

Assume there is no friction between the block and the hemisphere

Question 3

(Integer type question)

2021

A uniform chain of length 3 meter and mass $3\ kg$ overhangs a smooth table with 2 meter laying on

the table. If k is the kinetic energy of the chain in joule as it completely slips off the table, then the

value of k is

Question 4

(Integer type question) Two persons A and B perform same amount of work in moving a body through a certain distance dwith application of forces acting at angles 45° and 60° with the direction of displacement respectively. The ratio of force applied by person A to the force applied by person B is $\frac{1}{\sqrt{x}}$. The value of x is

Question 5

(Only one correct answer) A boy is rolling a $0.5 \ kg$ ball on the frictionless floor with the speed of $20 \ ms^{-1}$. The ball gets deflected by an obstacle on the way. After deflection it moves with 5 % of its initial kinetic energy. What is the speed of the ball now ?

 \bigcirc (a) $4.47\ ms^{-1}$ \bigcirc (b) $19.0\ ms^{-1}$ \bigcirc (c) $1.00\ ms^{-1}$ \bigcirc (d) $14.41\ ms^{-1}$

Question 6

(Integer type question) A ball of mass 4 kg, moving with a velocity of $10 ms^{-1}$, collides with a spring of length 8 m and force constant $10 Nm^{-1}$. The length of the compressed spring is x m. The value of x, to the nearest integer, is

Question 7

(Integer type question) A pendulum bob has a speed of 3~m/s at its lowest position. The pendulum is 50~cm long. The speed of bob, when the length makes an angle of 60° to the vertical will be ($g=10~m/s^2$)m/s.

Question 8

(Integer type question)

A force of $F = (5y+20) \ \hat{j} \ N$ acts on a particle. The work done by this force when the particle is

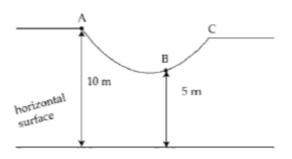
moved from $y=0\ m$ to $y=10\ m$ is

Question 9

(Only one correct answer)

2021

An automobile of mass 'm' accelerates starting from origin and initially at rest, while the engine

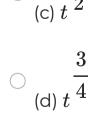

supplies constant power P. The position is given as a function of time by :

$$\bigcirc \text{ (a) } \left(\frac{8P}{9m}\right)^{1/2} t^{3/2}$$
$$\bigcirc \text{ (b) } \left(\frac{9P}{8m}\right)^{1/2} t^{3/2}$$
$$\bigcirc \text{ (c) } \left(\frac{9m}{8P}\right)^{1/2} t^{3/2}$$
$$\bigcirc \text{ (d) } \left(\frac{8P}{9m}\right)^{1/2} t^{2/3}$$

Question 10

(Integer type question)

2021


Question 11

(Only one correct answer)

2021

A body at rest is moved along a horizontal straight line by a machine delivering a constant power. The distance moved by the body in time 't' is proportional to :

$$\begin{array}{c} & \frac{1}{2} \\ (a) t^{\frac{1}{2}} \\ & \frac{1}{(b) t^{\frac{1}{4}}} \\ & \frac{3}{2} \end{array}$$

Question 12

(Only one correct answer)

2021

A constant power delivering machine has towed a box, which was initially at rest, along a horizontal

straight line. The distance moved by the box in time $^{\prime}t^{\prime}$ is proportional to :

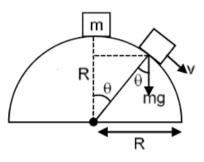
 \bigcirc (a) t

 \bigcirc (b) $t^{2/3}$

 \bigcirc (c) $t^{3/2}$

 \bigcirc (d) $t^{1/2}$

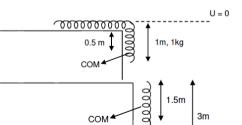
Answer 1


Correct answers is C

Solution:

K. E. +U = Total energy = constant

Answer 2


Solution:

From work energy theorem
$$W = \Delta K$$

 $Mg(R - R\cos\theta) = 1/2mv^2$
 $v = \sqrt{2gR(1 - \cos\theta)}$
To loose contact $\frac{mv^2}{R} = mg\cos\theta$
 $2mg(1 - \cos\theta) = mg\cos\theta$
 $2 - 2\cos\theta = \cos\theta$
 $\cos\theta = \frac{2}{3} = \frac{h}{R} = \frac{h}{3}$
 $\implies h = 2m$

Answer 3

Solution:

00000

Apply conservation of energy
$$U_i+K_i=U_f+K_f$$

 $-1 imes10 imes\left(rac{1}{2}
ight)+0=-3 imes10 imes1.5+K.\,E.$
 $K.\,E.=45-5=40~J$

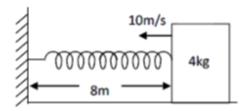
Answer 4

Solution:

 $w_1 = w_2 \ F_1 s \cos 45^\circ = F_2 s \cos 60^\circ$

$$\frac{F_1}{F_2} = \frac{1}{\sqrt{2}}$$
$$x = 2$$

Answer 5


Correct answers is A

Solution:

$$egin{aligned} kE_{ ext{final}} &= \eta rac{1}{2} m v^2 = rac{5}{100} imes rac{1}{2} m (20)^2 \ &rac{1}{2} m v_{ ext{final}}^2 = rac{5}{100} imes rac{1}{2} m (20)^2 \ &v_{ ext{final}} = \sqrt{20} = 2 \sqrt{5} = 4.47 \ m/s \end{aligned}$$

Answer 6

Solution:

$$rac{1}{2}kx^2=rac{1}{2}mv^2$$

 $100 imes x^2 = 4 imes 10^2$

 $x=2\ m$ compression in spring Length of spring will be $6\ m$

Answer 7

Solution:

 $egin{aligned} &rac{1}{2}mu^2 = rac{1}{2}mv^2 + mgl(1-\cos{60^\circ})\ &u^2 = v^2 + 2gl(1-\cos{60^\circ})\ &9 = v^2 + 20 imes 1/2 imes 1/2\ &9 = v^2 + 5\ &v = 2\ m/s \end{aligned}$

Answer 8

Solution: $W = \int F \cdot dy$ $W = \int_{0}^{10} (5y+20) dy = \left[\frac{5y^2}{2} + 20y\right]_{0}^{10}$ $\Longrightarrow = \frac{5 \times 100}{2} + 200 = 450 J$

Answer 9

Solution:

Energy supply = Pt in t sec

$$egin{aligned} Pt &= rac{1}{2}mV^2 \ V &= \sqrt{rac{2pt}{m}} \ V &= \sqrt{rac{2pt}{m}} \ rac{dS}{dt} &= \sqrt{rac{2P}{m}} \sqrt{t} \ rac{S}{0} dS &= \sqrt{rac{2P}{m}} \int _0^t t^{1/2} dr \ S &= rac{2\sqrt{rac{2P}{m}} t^{3/2}}{3} \ S &= rac{3S}{2\sqrt{rac{2P}{m}}} \ S &= \left(rac{8P}{9m}
ight)^{1/2} t^{3/2} \end{aligned}$$

Answer 10

Solution:

Apply conservation of energy

$$egin{aligned} & (K.\,E.\,)_A + (P.\,E.\,)_A = (K.\,E.\,)_B + (P.\,E.\,)_B \ & 0 + mg(10) = rac{1}{2}mV^2 + mg(5) \ & V^2 = 2 imes 10 imes 5 \ & V = 10 \ m/s \end{aligned}$$

Answer 11

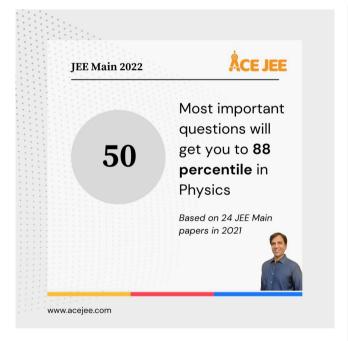
Correct answers is C

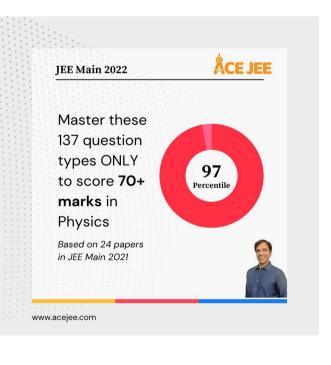
Solution:

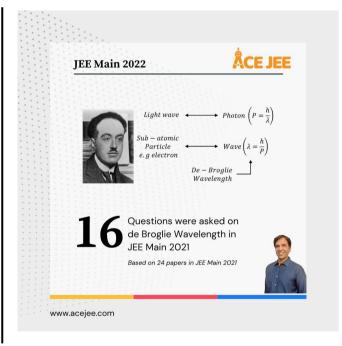
 ${\rm Energy}\,{\rm supply}=Pt$

in $t \; sec$

$$Pt=rac{1}{2}mV^2; \ V\propto \sqrt{t}; \ rac{dS}{dt}=C\sqrt{t} \ \int\limits_0^{s}dS=C\int\limits_0^t t^{1/2}dt$$


$$\Longrightarrow S = rac{2Ct^{3/2}}{3} \ S \propto t^{3/2}$$


Answer 12


Correct answers is C

Solution:

$$P = (ma)V = mVrac{dV}{dx} imes rac{dx}{dt}$$
 $\int rac{P}{m} dt = \int V dV$
 $rac{V^2}{2} = rac{P}{m} t$
 $\left(rac{dx}{dt}
ight) = \sqrt{rac{2P}{m} t}$
 $\int dx = \int \sqrt{rac{2P}{m}} t^{1/2} dt$
 $x = rac{2}{3} \sqrt{rac{2P}{m}} t^{3/2}; \quad x \propto t^{3/2}$

https://bit.ly/jeemain2022