
Center of mass of $I$ shaped lamina (of uniform surface density $\sigma$):
$x_{CM} = \cfrac{ab\cfrac{a}{2}+cd\cfrac{a}{2}+ef\cfrac{a}{2}}{ab+cd+ef}$
$y_{CM} = \cfrac{ab\cfrac{b}{2}+cd\cfrac{2b+c}{2}+ef\cfrac{2b+2c+f}{2}}{ab+cd+ef}$
To continue to explore center of mass of other commonly encountered shapes, click here…
- Two Particle System
- System of Three Particles
- A group of simple rigid bodies (for example a uniform $I$ shaped lamina
- Non uniform rod of length $L$
- Arc
- Uniform Circular arc
- Semicircular ring
- Semicircular disc
- Annular semicircular disc
- Triangle
- Solid hemisphere
- Hollow hemisphere
- Hollow cone
- Solid cone